

20th Scientific Symposium of the Austrian Pharmacological Society APHAR Innsbruck, Austria, 26–27 September 2014

MEETING ABSTRACT

A1.36

Successful rescue of impaired fear extinction leads to dynamic regulation of microRNAs in the amygdala

Conor Murphy¹, Ronald Gstir², Verena Maurer¹, Simon Schafferer², Nigel Whittle¹, Alexander Hüttenhofer² and Nicolas Singewald^{1,*} ¹Department of Pharmacology and Toxicology and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Austria; ²Division of Genomics and RNomics, Biocenter Innsbruck, Innsbruck Medical University, Austria

Background: Current treatments to overcome excessive fear in anxiety disorders, including exposure-based therapy, are far from being optimal. A basic principle of exposure-based therapy is the formation of long-lasting fear-inhibitory memories, which depends on *de novo* gene transcription of plasticity-related genes, amongst others. Recent evidence suggests that gene transcription after a learning event is influenced by non-protein-coding RNAs (ncRNAs) including microRNAs (miRNAs), for example, miR-128b which has been demonstrated to be involved in the formation of fear-inhibitory memory. However the role played by miRNAs promoting enduring fear-inhibitory memories in individuals with extinction deficits remains to be determined.

Methods: Mimicking anxiety patients, 129S1/SvImJ (S1) mice exhibit profound resistance to induce fear extinction. We have shown that persistent context-independent extinction in S1 mice can be induced using dietary zinc restriction. Utilizing dietary zinc restriction as a tool, we can elucidate the underlying mechanisms leading to the successful rescue of impaired fear extinction. To examine to role of miRNAs in this process we used microarray technology and subsequent RT-PCR to assess the regulation of miRNAs in the amygdala of S1 mice 2 h after the successful rescue of impaired fear extinction. Anatomical localization of candidate miRNAs was demonstrated by fluorescent *in situ* hybridization.

Results: Microarray analysis and consecutive RT-PCR confirmation revealed an altered regulation in a select set of miRNAs, including an increase in miR-144 expression in the amygdala of S1 mice. Genes regulated by miR-144 remain to be elucidated; however we show regulation of the predicted target retinoic acid receptor beta (RXR β), a plasticity-related gene, in S1 mice during rescue of impaired extinction. Experiments establishing the link between miR-144 and fear-inhibitory memories are ongoing. To examine the anatomical localization of candidate miRNAs in a neuronal subtype-specific manner we have set up and validated a fluorescent *in situ* hybridization. Initial results on candidate miR-144 demonstrate a highly selective expression restricted to the central amygdala.

Discussion: In conclusion, rescuing impaired fear extinction in a persistent and context-independent manner is associated with dynamic regulation of the expression of select miRNAs, which can interact with protein-coding synaptic plasticity genes. One candidate, miR-144, exhibits a highly selective expression restricted to the central amygdala, and we have confirmed the downregulation of RXR β , a predicted target of miR-144. Understanding the role of miRNAs in the rescue of impaired fear extinction may shed light on novel therapeutic targets to treating these debilitating disorders.

Acknowledgements: Supported by the the Austrian Science Fund FWF (SFB F44, Signal Processing In Neurons (SPIN)).

^{*}Corresponding author e-mail: nicolas.singewald@uibk.ac.at