MEETING ABSTRACT

A18.3 Humanized Foxp2, a gene involved in language acquisition, alters dopamine levels, cortico-striatal synaptic plasticity and accelerates transitions from declarative to procedural learning

Christian E Schreiweis1*, Ulrich Bornschein2, Eric Breguier e2, Cemil Kerimoglu3, Sven Schreiter4, Michael Dannemann5, Shubhi Goyal5, Ellis Rea6, Catherine A. French7, Rathi Puliyadi8, Matthias Groszer8, Simon E. Fisher9, Roger Mundry10, Christine Winter2, Wulf Hevers2, Svante Paabo5, Wolfgang Enard2 and Ann M. Graybiel8

1Brain and Spine Institute, Paris, France; 2Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany; 3Laboratory of Anthropology and Human Genetics, Department of Biology II, Ludwig-Maximilians University Munich, Martinsried, Germany; 4DFG Research Center for Regenerative Therapies, Technical University Dresden, Germany; 5McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, United States of America; 6Department of Psychiatry and Psychotherapy, Faculty of Medicine Carl Gustav Carus, Technical University Dresden, Germany; 7Champalimaud Neuroscience Programme, Champalimaud Centre for the Unknown, Lisbon, Portugal; 8Wellcome Trust Centre for Human Genetics, University of Oxford, United Kingdom; 9Institut du Fer à Moulin, Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche S505, Université Pierre et Marie Curie, Paris, France; 10Department of Language and Genetics, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands; 11Department of Developmental and Comparative Psychology and Primatology, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany

What enables the human nervous system to acquire language and speech and which genetic candidates might have contributed to this capacity? Two human-specific amino acid substitutions in the transcription factor FOXP2 are outstanding candidates, given that they might have been positively selected during human evolution and given that FOXP2 is currently the only gene firmly linked to speech and language development. When these two substitutions are introduced into endogenous Foxp2 of mice (Foxp2hum), cortico-basal ganglia circuits are specifically affected. Here we show that humanized Foxp2 alters dopamine levels, learning and cortico-striatal synaptic plasticity. Foxp2hum mice learn stimulus–response associations faster than their wild-type littermates in situations in which declarative (i.e. place-based) and procedural (i.e. response-based) forms of learning could compete. Striatal districts known to be differently related to these two modes of learning are affected differently in the Foxp2hum mice, as judged by measures of dopamine levels, gene expression patterns, and synaptic plasticity, including an NMDA receptor-dependent form of long-term depression. These findings suggest that dopamine-processing in cortico-basal ganglia circuits might be altered in mice with the humanized form of Foxp2 and raise the possibility that the humanized Foxp2 phenotype reflects a different tuning of corticostrital systems involved in declarative and procedural learning, a capacity potentially contributing to adapting the human brain for speech and language acquisition.

*Submitting author e-mail: c.schreiweis@icm-institute.org