Dopamine 2016
Vienna, 5–8 September 2016

MEETING ABSTRACT

A5.2

Phasic and tonic dopamine neurotransmission may be a continuum

Sweyta Lohani1,*, Adrià Martig1, Suzanne Underhill2, Alicia DeFrancesco-Lisowitz1, Susan Amara2 and Bita Moghadam1

1 Center for Neuroscience, University of Pittsburgh, PA, United States of America; 2 Department of Neurobiology, University of Pittsburgh, PA, United States of America; 3 National Institute of Mental Health, Bethesda, MD, United States of America

Both phasic and tonic modes of neurotransmission are implicated in critical functions assigned to dopamine, but they are generally treated as separate entities. Our findings bridge the multiple timescales of dopamine neurotransmission by demonstrating that phasic burst stimulation of VTA dopamine neurons produces a prolonged post-burst increase of extracellular dopamine in nucleus accumbens and prefrontal cortex. This prolonged elevation is not due to spillover from the stimulation surge but depends on impulse flow-mediated dopamine release. We identified Rho-mediated internalization of dopamine transporter as a mechanism responsible for prolonged availability of actively released dopamine. These results demonstrate that phasic and tonic dopamine neurotransmission can be a continuum and may explain why both modes of signaling are critical for motivational and cognitive functions associated with dopamine.

*Submitting author e-mail: swlj9@pitt.edu