A4.3
STAT1-deficient mice develop a B-cell malignancy reminiscent of JAK1/2-inhibition-associated B-cell lymphomas in MPN patients
Andrea Hoelbl-Kovacic1,4, Edit Porpaczy2,9, Sabrina Tripolt1,4, Bettina Gisslinger3, Zsuzsanna Bago-Horvath1,3, Emilio Casanova-Huvia4,5, Thomas Decker6, Sabine Fajmann1, Daniela A. Fux1, Sinan Gültekin2, Gerwin Heller1, Harald Herker1, Thomas Kolbe6,9, Eva M. Putz2, Christoph Kornaith4, Mathias Möller1, Michaela Prchal-Murphy1, Ana-Iris Schiefer2, Christine Schneckenleithner1, Cathrin Skrab2, Wolfgang R. Sperr1,12, Birgit Strobl1, Peter Valent1,12, Robert Kralovic1,15, Leonhard Mühler4, Ingrid Simonitsch-Klupp3, Emmanuelle Clappier14,15, Emmanuel Raffoux14,15, Jean-Jacques Kiladian14,15, Maria-Theresa Krauth1, Philipp B. Staber4, Georg Greiner1, Gregor Honmann1,2,16,17, Ulrich Jäger1,12, Heinz Gisslinger4 and Veronika Sexl1,4,18 (*Contributed equally; †Shared last authorship)
1Institute of Pharmacology and Toxicology, Department for Biomedical Sciences, University of Veterinary Medicine, Vienna, Austria; 2Division of Hematology and Hemostaseology, Department of Internal Medicine I, Comprehensive Cancer Center, Medical University of Vienna, Austria; 3Clinical Institute of Pathology, Medical University of Vienna, Austria; 4Ludwig Boltzmann Institute for Cancer Research (LBI-CR), Vienna, Austria; 5Institute of Physiology, Centre of Physiology and Pharmacology, Comprehensive Cancer Centre, Medical University of Vienna, Austria; 6Max F. Perutz Laboratories (MFLP), University of Vienna, Austria; 7Clinical Division of Oncology, Department of Medicine I, Comprehensive Cancer Center, Medical University of Vienna, Austria; 8Department of Emergency Medicine, Medical University of Vienna, Austria; 9Biomedoids Austria, University of Veterinary Medicine, Vienna, Austria; 10IFA Tulln, University of Natural Resources and Life Sciences, Tulln, Austria; 11Institute of Animal Breeding and Genetics, Department of Biomedical Sciences, University of Veterinary Medicine, Vienna, Austria; 12Ludwig Boltzmann Cluster Oncology, Medical University of Vienna, Austria; 13CeMM Research Center for Molecular Medicine, Austrian Academy of Sciences, Vienna, Austria; 14Hôpital Saint-Louis, AP-HP, Centre d’Investigations Cliniques, Paris, France; 15Université Paris-VII Denis Diderot, Paris, France; 16Department of Laboratory Medicine, Medical University of Vienna, Austria; 17MLL Munich Leukemia Laboratory, Munich, Germany

Background: The highly conserved JAK/STAT signaling pathway regulates proliferation, differentiation, apoptosis and immune responses. Several malignancies are associated with constitutive activation of STAT family members. Activating mutations in STAT3 drive the development of diffuse large B-cell lymphomas. The STAT3 counter-player STAT1 is generally considered a tumour suppressor. We observed that the loss of STAT1 provokes spontaneous haematopoietic tumours in mice.

Methods: Spontaneous hematopoietic tumours were analysed by FACS. The co-existence of a myeloid hyperplasia (MH) and a malignant B-cell disease was assessed via transplantations, myeloid cell depletion and all-trans retinoic acid (ATRA) treatment in vivo. High-purity sorting of individual haematopoietic cell lineages followed by transplantations were performed to identify the leukemia-initiating cell. Clonality of B cells was assessed by Southern blotting and PCRs for DJ rearrangements. Expression of STAT1-dependent target genes as well as general hallmark genes for B-cell lymphomas were analysed by qPCR. Two independent human patient cohorts were monitored for co-occurrence of myeloproliferative neoplasms (MPN) and B-cell lymphoma. Transcriptional profiles of human and murine patients were compared via RNA sequencing.

Results: STAT1-deficient mice develop an MH, which initially marks a malignant B-cell disease. Upon transplantation, malignant B cells arise and cause a fatal disease. The malignant B cells can be maintained in vitro. Transcriptional profiling reveals an up-regulation of c-Myc, Bcl-2, SpiB, Mel2B, Card11 and Cd274 (PD-L1) and down-regulation of Socs-1, Cdkn2a, B2m and Prdm1—alterations found in aggressive human B-cell lymphoma. The malignant B cells are already present in the Stat1+ mouse during MPN. Elimination of the myeloid pvia via ATRA freed these malignant B cells and allowed them to expand. We observed a similar switch from MPN to aggressive B-cell lymphoma in a subset of human patients upon inhibition of Janus kinase 1/2 (JAK1/2). The inhibition of JAK1/2 eliminates myeloid cells, but appeared to cause a fatal aggressive B-cell lymphoma later on. To identify the global frequency of this adverse effect, 626 MPN patients (557 with conventional, 59 with JAK1/2 inhibitor treatment) from Vienna and 929 (872 vs. 57) from Paris were monitored. In the cohort of 626 patients, B-cell lymphomas evolved in 5.8% upon JAK1/2 inhibition compared to 0.36% with conventional treatment (16-fold increased risk). A similar increase was observed in the independent cohort of 929 MPN patients. Comparison of transcriptional profiles identified 213 genes with overlapping expression patterns in murine and human patients. As in MH-Stat1+ mice, a significant proportion of MPN patients who developed an aggressive B-cell lymphoma harboured clonal B cells, which already existed during MPN.

Discussion: We conclude that JAK/STAT1 pathway inhibition in MPN is associated with an elevated frequency of aggressive B-cell lymphomas. Detection of a pre-existing B-cell clone will identify individuals at risk.


© 2018 Intrinsic Activity, ISSN 2309-8503; Austrian Pharmacological Society (APHAR)