

Joint Meeting of the Austrian Neuroscience Association (16th ANA Meeting) and the Austrian Pharmacological Society (25th Scientific Symposium of APHAR) Innsbruck, 25–27 September 2019

MEETING ABSTRACT

A3.22

L-type calcium channel-mediated Ca²⁺ influx exerts regulatory control of the mitochondrial ATP synthase in cultured hippocampal neurons

Matej HOTKA^{1,*}, Michal CAGALINEC^{2,3}, Karlheinz HILBER¹, Stefan BOEHM¹ and Helmut KUBISTA^{1,**}

¹Department of Neurophysiology and Neuropharmacology, Center of Physiology and Pharmacology, Medical University of Vienna, Austria; ²Department of Cellular Cardiology, Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia; ³Laboratory of Mitochondrial Dynamics, Department of Pharmacology, Institute of Biomedicine and Translational Medicine, Faculty of Medicine, University of Tartu, Estonia

Background: Calcium is a major regulator of mitochondrial ATP synthesis. The Ca²⁺ influx during neuronal activity stimulates mitochondrial metabolism, which appears to provide a mechanism how the neurons cope with the energetic burden. However, little is known about any source specificity regarding the responsible cytosolic Ca²⁺ rises. One candidate for providing regulatory Ca²⁺ rises is the L-type family of voltage-gated calcium channels (LTCCs, or Ca_V1.x channels).

Methods: In this study we investigated the impact of modulating LTCC-mediated Ca²⁺ influx on mitochondrial function, which was assayed using Perceval, a genetically encoded fluorescence indicator of ATP/ADP ratio, and TMRM (tetramethylrhodamine methyl ester), an indicator of the mitochondrial membrane potential (Ψ mt). Furthermore, we employed oligomycin to probe the operational mode of the mitochondrial ATP synthase. Neuronal activity was stimulated by elevating extracellular K⁺ or by application of the GABA_A receptor antagonist bicuculline. The activity of LTCCs was modulated by application of an agonistic (Bay K8644) or an antagonistic dihydropyridine (isradipine).

Results: Our results demonstrate that LTCC-mediated Ca²⁺ influx regulates the ATP synthase in a bimodal manner, with moderate mitochondrial Ca²⁺ elevations exerting a stimulatory effect, whereas higher Ca²⁺ elevations induce a switch to reverse-mode operation. We provide evidence, that the stimulatory effect involves Ca²⁺ induced Ca²⁺ release from intracellular stores, whereas the switch to reverse-mode operation requires nitric oxide formation.

Discussion: Our results suggest that LTCCs are physiological regulators of mitochondrial function. LTCCs are able to promote mitochondrial ATP synthesis or to turn mitochondria into consumers of ATP.

Acknowledgements: Austrian Science Fund FWF (project P 28179). Keywords: L-Type calcium channels – mitochondria – ATP synthase – calcium – neuron – hippocampus

^{*}Corresponding author e-mail: matej.hotka@meduniwien.ac.at

^{**}Corresponding author e-mail: helmut.kubista@meduniwien.ac.at