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Background: In clinical practice diagnostical categories as major 

depressive disorder (MDD) remain less definable, which potentially 

leads to inappropriate treatment and hence to insufficient treatment 

response. Machine learning algorithms based on structural MRI has 

been applied fairly successfully for classification purposes. In a meta-

analytical report sensitivity and specificity rates where 70  % and 71 %, 

respectively, in order to discriminate patients with MDD from healthy 

subjects [1]. Morphological segmentation pipelines entail a new 

degree of resolution of complex structures as the neocortex as well 

as subcortical brain regions. Structural MRI generates estimations of 

parameters as cortical thickness and surface area along cortical 

volume [2] as well as on subfields of the hippocampus and nuclei of 

the amygdala and thalamus [3, 4]. Nevertheless, there is a lack of a 

neurobiological biomarker and of established methods to classify 

diagnostical entities. Therefore, we aim to discriminate patients with 

MDD from healthy subjects based on various cortical gray matter 

parameters (cortical thickness, area and volume) as well as on 

subcortical regions and subunits of the hippocampus, amygdala and 

thalamus. 

Methods: We analysed cross-sectional 3-Tesla MRI data (sequence: 

MPRAGE) of 24 patients with MDD and 39 healthy study subjects. To 

estimate mean cortical thickness, area and volume we utilized the 

FreeSurfer software (version 6.0). Thirtyfour regions where extracted 

on defined regions by the Desikan-Killiany atlas [5]. In addition, 

comprehensive segmentation of the hippocampus, amygdala and 

thalamus into specific sub-compartments was executed. Predictive 

analytics was performed by using the statistical software “R” and 

“randomForest” (RF). Next to the mean accuracy, sensitivity and 

specificity, RF selected the most informative sets of predictors based 

on cortical and subcortical gray matter parameters. 

Results: When performing a separate RF model for each of the 

structural MRI measures (cortical thickness, surface area, cortical 

volume, subcortical brain regions, subfileds of the hippocampus or 

amygdala or thalamic nuclei), a maximum accuracy over 0.67 for the 

validation sets across repeats was attained. In a combined RF model, 

using all structural MRI measures, we achieved a mean accuracy for 

the validation sets across repeats over 0.74, with an excellent 

sensitivity and poor specificity (0.90 and 0.47, respectively). Feature 

selection emphasized cortical gray matter regions or subcortical 

structures across all measures. 

Discussion: Machine learning and randomForest revealed highest 

accuracy (0.74; sensitivity of 0.90 and specificity of 0.47) to discrimi-

nate MDD from healthy subjects when sMRI measures of all regions 

and subdivisions where utilized in the model. These interesting 

findings need further confirmation on an external study sample. We 

are currently in the process of allocating a viable cooperating working 

group that could provide an external validation data set and are 

optimistic with regards of verifying our findings in the near future. 
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