INTRINSIC

21st Scientific Symposium of the Austrian Pharmacological Society: Joint Meeting with the British Pharmacological Society and the Pharmacological Societies of Croatia, Serbia and Slovenia Graz, 16–18 September 2015

MEETING ABSTRACT

A1.3

Receptor characterization of serotonin and bradykinin actions on isolated rat peripheral arteries

Marko STOJANOVIĆ*, Miroslav RADENKOVIĆ, Nebojša SKORUPAN and Milica PROSTRAN

Department of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, Serbia

Background: Serotonin, a monoamine neurotransmitter, induces vascular effects predominantly after binding to 5-HT₁ or/and 5-HT₂ receptors, while bradykinin, a pharmacologically active peptide, produces its effects through the selective activation of B₁ and B₂ kinin receptors. Accordingly, the aim of this study was to determine whether serotonin 5-HT₂ receptors and bradykinin B₂ receptors are involved in serotonin- and bradykinin-produced responses of the investigated blood vessels, respectively.

Methods: Femoral and common carotid arteries were isolated from male Wistar rats, cut into circular segments, and placed in an organ bath filled with Krebs-Ringer bicarbonate solution. Serotonin- and bradykinin-produced cumulative concentration-dependent contractile curves were obtained in vascular rings previously equilibrated at basal tone.

Results: Serotonin and bradykinin produced concentrationdependent contractions of carotid and femoral arteries, respectively. Ketanserin (a 5-HT₂ receptor antagonist) abolished serotoninevoked contractions of examined blood vessels. On the other hand, HOE 140 (icatibant; a selective B₂ kinin receptor antagonist) significantly, but not completely, reduced the contraction induced by bradykinin in femoral arteries.

Discussion: 5-HT₂ and B₂ receptors have pivotal role in serotoninand bradykinin-induced contractile actions in investigated blood vessels, respectively. Nevertheless, the importance of 5-HT₂ receptors was shown to be essential for the serotonin-induced effect on the common carotid artery, while we can presume that apart from B₂ receptors, bradykinin-induced contractile responses of the femoral artery probably includes parallel activation of B₁ receptors to a smaller extent.

Acknowledgements: This investigation was supported by the Ministry of Education and Science of the Republic of Serbia, grant no. 175023.

^{*}Corresponding author e-mail: marko.stojanovic@mfub.bg.ac.rs