INTRINSIC

21st Scientific Symposium of the Austrian Pharmacological Society: Joint Meeting with the British Pharmacological Society and the Pharmacological Societies of Croatia, Serbia and Slovenia Graz, 16–18 September 2015

MEETING ABSTRACT

A1.5

Effects of wine polyphenol resveratrol on the renal artery of diabetic rats

Vladimir ĐOKIĆ¹, Radmila B. NOVAKOVIĆ¹, Jovana RAJKOVIĆ¹, Vladimir ŽIVANOVIĆ², Božana DIMITRIJEVIĆ¹, Helmut HEINLE³ and Ljiljana C. GOJKOVIĆ-BUKARICA^{1,*}

¹Institute of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, Serbia; ²University Clinical Hospital Center "Dr Dragiša Mišović – Dedinje", University of Belgrade, Serbia; ³Institute of Physiology, University of Tübingen, Germany

Background: The anti-diabetic effects of resveratrol are well documented. It has been shown previously that vasorelaxation of rat renal artery (RA) induced by resveratrol is partly endothelium-dependent and involved nitric oxide production. The endothelium-independent relaxation of RA by resveratrol is mediated by activation of smooth muscle big calcium-sensitive potassium (BK_{ca}) channels. However, the mechanisms by which resveratrol causes vaso-dilatation of RA from diabetic rats are not defined. Thus, the aim of this study was to investigate the mechanisms of resveratrol-induced vasorelaxation of RA from diabetic rats.

Methods: Insulin-dependent diabetes in male Wistar rats was induced by alloxan. Rings of RA were mounted in an organ bath for recording isometric tension. The experiments followed a multiple curve design. Contractions of RA were provoked by phenylephrine or by KCl (100 mM).

Results: Resveratrol relaxed RA of normal rats more potently than RA of rats with diabetes (EC_{50} were 8 and 40 µM, respectively). L-NAME and methylene blue partly antagonized the relaxation of RA of normal animals only. A selective blocker of ATP-sensitive potassium (K_{ATP}) channels, glibenclamide, and non-selective and highly selective blockers of BK_{Ca} channels, tetraethylamonium and iberiotoxin, did not affect the effects of resveratrol in both experimental models. High concentration of resveratrol (100 µM) completely inhibited KCI-induced contractions of RA in both experimental models.

Discussion: In conclusion, we have shown that resveratrol induces a strong endothelium-dependent relaxation of RA of normal rats. In diabetic rats, resveratrol induced NO-independent relaxation of RA. These observations indicate that the early stage of insulin-dependent diabetes mellitus is associated with a functional defect of the endothelium of RA. K_{ATP} and BK_{Ca} channels are not involved in resveratrol-induced relaxations of RA. It seems that the effects of resveratrol on RA of diabetic rats involves mechanisms independent of endothelium, K_{ATP} and BK_{Ca} channels. We need further investigations to evaluate this mechanism.

Acknowledgements: This work was supported by scientific research grant no. TR31020 from the Ministry of Education, Science and Technological Development of the Republic of Serbia.

^{*}Corresponding author e-mail: bukarica@rcub.bg.ac.rs