INTRINSIC

21st Scientific Symposium of the Austrian Pharmacological Society: Joint Meeting with the British Pharmacological Society and the Pharmacological Societies of Croatia, Serbia and Slovenia Graz, 16–18 September 2015

MEETING ABSTRACT

A2.17

Functional and physical interactions between P2Y receptors and ion channels

Hend GAFAR, Manuel DOMÍNGUEZ RODRÍGUEZ, Giri K. CHANDAKA, Klaus SCHICKER and Stefan BOEHM*

Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Austria

Background: Neuronal P2Y receptors, *i.e.* nucleotide-sensitive G protein-coupled receptors (GPCRs), are known to control various voltage-gated ion channels, in particular Kv7 potassium and Cav2.2 calcium channels. The differential modulation of these ion channels via GPCRs was shown to rely on the presence or absence of scaffolding proteins. Since scaffold proteins are believed to bring GPCRs and ion channels in close proximity to guarantee efficient G protein-mediated modulation, this project evaluated whether a tight contact between P2Y receptors and ion channels is a prerequisite for their functional interaction.

Methods: P2Y receptors and ion channels were labeled either with CFP or YFP. For all experiments, a CFP/YFP pair of receptor and channel was transfected transiently into tsA201 cells. Channel modulation by nucleotides was determined by patch-clamp recordings. The fluorescence microscopy techniques FRET (Förster resonance energy transfer) and DRAP (donor recovery after acceptor photobleaching) were used to determine the protein–protein interaction between receptors and channels. Furthermore, FRAP (fluorescence recovery after photobleaching) was performed to elucidate the mobility of the receptors and channels in the membrane.

Results: Activation of P2Y₁, but not of P2Y₁₂, receptors by ADP inhibited the K⁺ currents in a concentration-dependent manner by up to 20.5 ± 1.9%. Conversely, activation of both, P2Y₁ and P2Y₁₂, receptors reduced the Ca²⁺ currents by up to 60.1 ± 7.4% and 76.3 ± 4.2%, respectively. FRET and DRAP experiments showed that P2Y₁ has a protein–protein interaction with both, K_V7.2/7.3 (NFRET 0.32 ± 0.02, DRAP recovery 10.3 ± 3.0%) and Ca_V2.2 (NFRET 0.37 ± 0.02, DRAP recovery 10.1 ± 1.8%). On the other hand, P2Y₁₂ has an interaction only with Ca_V2.2 (NFRET 0.39 ± 0.03, DRAP recovery 12.7 ± 1.0%) but not with the K_V7.2/7.3 channels. FRAP experiments revealed that the mobility of the ion channels alone is higher than that of the receptors. The coexpression of the P2Y receptors significantly reduced the mobility of the Ca_V2.2 channel by 50% (from 3.3 sec to 6.2 sec). In the case of K_V7.2/7.3 channels, the τ values were not significantly changed by the presence of P2Y.

Discussion: The functional control of K_V7 by P2Y₁ and Ca_V2.2 by P2Y₁ and P2Y₁₂ receptors relies on a close apposition of receptors and channels. In the case of Ca_V2.2 and P2Y12 this is even accompanied by a physical interaction.

Acknowledgements: This study is supported by the FWF-funded doctoral program CCHD (W1205).

^{*}Corresponding author e-mail: stefan.boehm@meduniwien.ac.at