

Joint Meeting of the Austrian Neuroscience Association (16th ANA Meeting) and the Austrian Pharmacological Society (25th Scientific Symposium of APHAR) Innsbruck, 25–27 September 2019

MEETING ABSTRACT

## A3.3

## $\textsc{STAT3}\beta$ is a tumor suppressor in acute myeloid leukemia

Petra AIGNER<sup>1</sup>, Tatsuaki MIZUTANI<sup>1</sup>, Jaqueline HORVATH<sup>1,2</sup>, Thomas EDER<sup>1</sup>, Stefan HEBER<sup>3</sup>, Karin LIND<sup>4</sup>, Valentin JUST<sup>1</sup>, Herwig P. MOLL<sup>5</sup>, Assa YEROSLAVIZ<sup>6</sup>, Michael J.M. FISCHER<sup>3</sup>, Lukas KENNER<sup>1,7,8</sup>, Balázs GYŐRFFY<sup>9,10</sup>, Heinz SILL<sup>4</sup>, Florian GREBIEN<sup>1,11</sup>, Richard MORIGGL<sup>1,12</sup>, Emilio CASANOVA<sup>1,5</sup> and Dagmar STOIBER<sup>1,2,13,\*</sup>

<sup>1</sup>Ludwig Boltzmann Institute for Cancer Research, Vienna, Austria; <sup>2</sup>Institute of Pharmacology, Center for Physiology and Pharmacology, Comprehensive Cancer Center, Medical University of Vienna, Austria; <sup>3</sup>Institute of Physiology, Center for Physiology and Pharmacology, Medical University of Vienna, Austria; <sup>4</sup>Division of Hematology, Medical University of Graz, Austria; <sup>5</sup>Institute of Physiology, Center for Physiology and Pharmacology, Comprehensive Cancer Center, Medical University of Vienna, Austria; <sup>6</sup>Computational Systems Biochemistry group, Max Planck Institute for Biochemistry, Martinsried, Germany; <sup>7</sup>Clinical Institute of Pathology, Medical University of Vienna, Austria; 8 Unit of Pathology of Laboratory Animals, University of Veterinary Medicine, Vienna, Austria; <sup>9</sup>MTA TTK Lendület Cancer Biomarker Research Group, Institute of Enzymology, Hungarian Academy of Sciences, Budapest, Hungary; <sup>10</sup>Semmelweis University, 2nd Department of Pediatrics, Budapest, Hungary; <sup>11</sup>Institute of Medical Biochemistry, University of Veterinary Medicine, Vienna, Austria; <sup>12</sup>Institute of Animal Breeding and Genetics, University of Veterinary Medicine, Vienna, Austria; <sup>13</sup>Current affiliation: Department Pharmacology, Physiology and Microbiology, Division of Pharmacology, Karl Landsteiner University of Health Sciences, Krems, Austria

**Background:** Signal transducer and activator of transcription 3 (STAT3), a multifunctional regulator of transcription, is expressed in two alternatively spliced isoforms, full-length STAT3 $\alpha$  and truncated STAT3 $\beta$ . Although formerly postulated as a dominant negative regulator, STAT3 $\beta$  has been attributed with STAT3 $\alpha$ -independent functions and recently gained attention as a potent tumor suppressor in cancer. In acute myeloid leukemia (AML), STAT3 is frequently constitutively activated; however, the functions of STAT3 isoforms are unknown. Thus, the objective of this study was to gain improved understanding of STAT3 $\beta$  and its specific role in AML.

**Methods:** Samples, derived from AML patients at diagnosis, were analyzed for the *STAT3* $\beta$ /*STAT3* $\alpha$  mRNA expression ratio and its correlation with clinical prognosis and overall survival. In addition, an inducible *Stat3* $\beta$  transgenic mouse model was crossed with *Pten*-deficient mice, as a pre-described model for AML. In a second AML model, fetal liver-derived stem cells from *Stat3* $\beta$  transgenic mice and wild-type littermates, transduced with an MLL-AF9 translocation, were transplanted in immunocompromised NOD scid gamma mice.

**Results:** Here, we demonstrate a correlation between higher  $STAT3\beta/STAT3\alpha$  ratios in patient-derived AML samples and a favorable clinical prognosis as well as increased overall survival. In two separate AML mouse models, elevated levels of  $Stat3\beta$  resulted in severely reduced leukemogenesis, delayed leukemic infiltration and prolonged survival. Additionally performed RNA-seq analysis revealed a small set of genes that are specifically up- or down-regulated in *Stat3β* transgenic AML blasts. In particular, genes

associated with cell-surface interactions at the vascular wall and mobilization were found to be regulated by STAT3 $\beta$ , *e.g. Sell* (L-selectin). *In vitro*, the antibody-mediated blocking of SELL successfully extinguished initial differences in colony-formation assays with *Stat3\beta* transgenic blasts.

**Discussion:** In conclusion, these findings indicate that STAT3 $\beta$  can serve as an anti-tumorigenic molecule and tumor suppressor in AML mouse models via the tumor-intrinsic regulation of novel target genes. Furthermore, the *STAT3\beta/STAT3\alpha* mRNA expression ratio in AML patients correlates with clinical outcome and hence demonstrates potential as a future prognostic marker and might help to shape new treatment strategies.

Keywords: ...

<sup>\*</sup>Corresponding author e-mail: dagmar.stoiber@kl.ac.at